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Abstract

IoT systems have been broadly adopted, and we are now seeing increasing deployment in
both home and commercial environments. However, with this broad distribution of new
technology, there has been an introduction of new classes of attacks, specifically targeting
IoT networks and devices. Due to the constrained natures of IoT devices, as well as
the opacity of IoT framework, standard intrusion detection systems cannot be applied
here. In this paper, we introduce Sentinel, a new framework aimed at facilitating the
conception of novel detection system. By leveraging common features of IoT frameworks,
we expose, collect and centralize low-level system information of each smart device in
a network. We demonstrate that the data collected contains some strong signal, by
designing a proof of concept intrusion detector that reaches a 95.7% accuracy. We also
perform a power consumption analysis to prove that Sentinel is compatible with the
power requirements of battery-operated devices, by increasing the power usage by less
than 1%. We believe that this framework can be used to design highly performant,
specialized IoT intrusion detection systems.
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Chapter 1 |
Introduction

Internet of Things (or IoT) is a new technology domain that has been steadily increasing
in popularity in the past decade. It is today a multi-billion dollar industry, and has found
many applications. The most commonly encountered use of IoT is in smart homes, where
IoT devices (such as light bulbs, cameras, or door locks) are installed and connected to
provide a way of automating daily tasks and overseeing the state of a home. Another
main application of IoT is industrial environment monitoring, where wireless sensors are
deployed to provide real-time feedback of the state of a production line or warehouse.
A more recently emerging application domain is healthcare, where patient care and
monitoring machines are connected to provide a centralized and more accessible view of
their current condition.

Over the past decade, security issues have been frequently found in most devices and
frameworks. Attacks specialized against IoT systems have been developed and deployed.
The most notable one is the Mirai botnet. This malware, that was first detected in late
2016, infected more than half a million devices in a span of a few months, and used this
network to launch a series of DDoS attacks. This included the largest one to date, with
a throughput of 623 Mbps [1].

These insecurities are mostly due to economics; as IoT devices have to be relatively
cheap to be competitive, manufacturers and application developers often forgo good
security practices as a way to keep costs down. Furthermore, as the IoT market is
fast-moving, with new products announced every month, a short time-to-market is often
key for manufacturers, causing security concerns to be delegated to low-priority, or even
post-launch items. Although intrusion detection for standard networks is a mature field,
it is still developing for IoT networks. This stems from these devices having different
constraints, like low computing power, meshed and ad-hoc structure, or limited battery
capacity. These properties require the use of intrusion detection methods that do not incur

1



an overhead in processing and power usage. Since traditional intrusion detection methods
rely heavily on local pre-processing work, they are nor applicable to IoT systems [2].

We believe that these security issues are inherent to IoT. Indeed, IoT frameworks
implementations are too opaque and high-level to provide a useful level of insight into
the low-level state of the devices. These frameworks abstract away the specifics of the
hardware, by presenting a simple software interface layered on top of an embedded
platform, to which the user is not granted direct access to. We posit that this lack of
visibility inside the devices is an key advantage for adversaries, allowing them to hide
their actions among the high-level traffic. By piercing through this layer of opacity, and
exploiting the information we obtain, we thwart this advantage. Further, it has been
shown that low-level access can be a powerful way to detect anomalous behavior [3].

We hypothesize that, as IoT devices have a simple and unique purpose, low-level
data obtained by accessing their underlying OS contains a strong signal, that can be
used for malicious behavior detection. As such, we are not trying to replace existing
security mechanisms and policies, but rather add a new layer, based on exploiting so
far unused data. Indeed, most state-of-the-art IoT Intrusion Detection systems rely on
protocol-specific network information [4–7].

In order to verify this hypothesis, we design a novel infrastructure around existing
IoT ecosystems. A key insight is that providing this system-level data reporting can
be achieved for a low performance cost, and in a scalable fashion. This novel system
also leverages the presence of a centralized high-capacity, non power-constrained node in
the IoT network (a “hub”), but is agnostic to the actual IoT framework used, making it
compatible with most of the common existing ones [8–10]. The data collected can be
processed either locally at the hub, or remotely to build a more centralized detector.

This work focuses on the collection and examination of a set of metrics from devices
made to perform a single task. This simplicity of the nodes makes it possible to keep the
number of parameters measured low, while still being representative of the state of the
device. This approach could not be applied to more traditional network environments,
where nodes are either multi-purpose workstations or dedicated servers, as these have
higher complexity when compared to IoT devices. As such, our approach is fit for IoT
networks, and only those.

In this paper, we propose a novel intrusion detection framework specialized for IoT
environments, Sentinel. This framework exposes low-level system information to the
user-space of every IoT device, periodically sampling this data, and centralizing it at
the hub of the network. The low-level data is extracted by a Linux Kernel Module
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installed on the devices, that retrieves the latest values of the queried metrics from the
kernel. A polling application, running on each IoT node, is responsible for collecting this
information at a regular rate and forwarding it to the network hub. This hub runs a data
collection application that listens, receives incoming data samples, and stores the data
for potential intrusion detection systems to use.

We evaluate the efficacy of low-level system monitoring by using Sentinel to record
data with synthetic experiments. These consist of cycling each device in the network
through their possible states, while subjecting them to a set of common IoT attack
side-effects. The dataset gathered is then used to train and evaluate multiple Intrusion
Detection models (based on Decision Trees), in order to prove that the data provided
by Sentinel contains valuable signal for malicious behavior detection. We verify this by
looking at the detection rates of the Decision Trees, as well as their true positive and
false positive rate. We find that the true positive rate for each attack is above 91%, with
an average detection rate of 95.8%. We also prove that the additional power use from
the components of our framework fit the requirements of battery-powered devices by
observing the instantaneous electrical consumption. We measure this power usage for
different values of data polling rate. We find that for a sampling period of 10 seconds or
more, Sentinel causes an increase of power consumption of less than 1% when compared
to a non-instrumented device, while retaining an detection rate of 93%.

In summary, this paper makes the following contributions:

• We introduce Sentinel, a real-time low-level system monitoring framework for IoT
devices.

• We generate datasets by running simulated attacks against an IoT network, and
record their effects.

• We use these datasets to confirm that Sentinel provides pertinent information for
intrusion detection.

• We measure the impact Sentinel has on power consumption to validate that it can
realistically be used in a production environment.

In performing this work, we prove that Sentinel is a useful addition to the IoT security
space, by leveraging up until now unexploited data sources. Further, this data only
contains truly valuable information due to the single-purpose nature of IoT devices,
and would most likely not be useful for a general-purpose machine, such as a desktop
workstation.
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Chapter 2 |
Background

2.1 IoT Frameworks
An IoT framework is a set of systems that connect and establish communication between
multiple devices and a centralized location, while providing a unified user interface. All
IoT frameworks will almost always posses the same core elements:

1. A hub, which is a device located at the center of the network, in charge of
maintaining and controlling a list of connected nodes.

2. A device API, that allows smart things manufacturers to expose their functionalities
in a way that can be used by the hub.

3. A user interface, usually in the form of a smartphone app or a web-app.This
interface allows the user to see the state of their devices, control them, add new
ones, and create rules to automate their behavior.

This architecture is presented in Figure 2.1.
In an IoT environment, it is common for the nodes to have limited computation

power and energy capacity. As these devices are very specialized, they are designed to
just fit their power requirements, often leaving very little room for additional software.
This implies that any additional security feature that may want to be added has to be as
minimal as possible, and offload some work to a sturdier machine, be it the hub or a
dedicated device.
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Figure 2.1. Architecture of an IoT framework

2.2 Intrusion Detection Systems
Intrusion detection is a domain of computer security dedicated to monitoring a system
for any malicious behavior. Intrusion Detection Systems (IDS) exist to cover different
classes of systems, and are generally separated in two architectures.Network-based IDS
(NIDS) monitor the state of an entire network in search of malicious agents, by gathering
network-level metrics and processing them at a central location. Host-based IDS (HIDS)
run on a specific host and search for malware operating inside of it, through the use of
system-level and process-level information [11].

There are three approaches an IDS designer can use to detect malicious behavior.
Signature-based detection can be performed against threats that have been detected
and identified in the past, by comparing the pattern of collected data to a list of known
malicious signatures in search of a match. While very efficient, this type of detector is
powerless against new attacks [12].

Anomaly-based detection takes a different path, by building an internal representation
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of the system, which is compared to an expected baseline state. This baseline has to
be learned by the system through the observation of known benign behavior. Any
discrepancy can then be detected and handled. However, this method is more prone to
false positives, as it relies heavily on a statistical approach to the detection [13].

The third main Intrusion Detection logic is specification-based. Similarly to the
anomaly-based detection, the system possesses a set of baseline and threshold values that
are compared to the current situation. While the previous method infers these values
from observation, they are manually defined by a human expert in this method. This
allows the system to start acting immediately after being turned on, as it does not require
any training. Further, the false positive rate is usually lower compared to anomaly-based
detection. However, the need for human intervention makes this system poorly scalable,
as any change made to the infrastructure will force the rules to be updated [13].

All three approaches rely on the same base principle: the collection of actionable
data, from which decisions are made. However, due to their heterogeneous nature, IoT
systems seldom present a standardized access method to this crucial information.

2.3 IoT network attacks
IoT attacks are usually sorted in three different categories: node-level, network-level, and
application-level attacks [14].

2.3.1 Node-level

These attacks focus on targeting a single device. Due to their low-power nature, IoT
devices are very vulnerable to DoS (Denial of Service) attacks. This class of attacks is
characterized by an attacker rendering a device unresponsive. This is often achieved by
flooding it with requests to saturate its CPU [15]. For battery-powered devices, this can
also be done through a “battery draining” attack, where the attacker sends a constant
flow of requests to the device. This prevents it from entering sleep mode which exhausts
its battery at a much higher rate than normal, and causes the device to shut down once
it is depleted [16,17].

Physical attacks take a different path to node-disruption. In this instance, the attacker
needs to have physical access to the device to compromise it, but the resulting attacks
are much harder to detect. A common type of physical attack is RFID tampering, where
the adversary leverages common vulnerabilities in the RFID protocol to disrupt the
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network [18].

2.3.2 Network-level

Network-level attacks correspond to attacks having an influence on the IoT network as a
whole. The most often encountered attacks of this type are routing attacks, which uses a
wide variety of methods to manipulate the network flow to the adversary’s advantage.
These attacks only work in meshed networks, where every device can be responsible
for routing packets to their destination. The simplest routing attack is the black hole
attack, where a compromised node will advertise itself as the optimal route to every
other node, and drop every packets received, effectively stopping communications in
the network. A grey hole attack operates in the same way, but only drops a fraction of
received traffic [19].

Another class of network-level attacks, encountered both in traditional networks and
in IoT network, are passive listening attacks. In this scenario, the attacker, having taken
over a device, uses it to eavesdrop on the network traffic to gather insufficiently protected
sensitive information. This data gathering can also be achieved by exploiting network
side-channels, such as packet timings or channel bands used.

2.3.3 Application-level

Finally, application-level attacks are designed to disrupt or take down a specific application
running on a node (so-called “edge computing” nodes). This can be achieved in many
different ways, depending on the application running on the node. For instance, a
node can be tricked into downloading a malicious file from the Internet, allowing an
attacker to take it over [20]. Another way of targeting an application is by running a
Man-in-the-Middle attack. This is done by spoofing a service the device needs to connect
to, and using this connection to sniff sensitive information [21]. As these attacks are very
dependent on the actual application running on the device, our work does not focus on
them.

2.4 Mirai Botnet
Mirai is the latest significant IoT botnet in history, having infected hundreds of thousands
of devices over a few months and using them to launch large-scale DDoS attacks. Mirai
infects devices by using default or common login-password combinations. A Mirai bot
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works by scanning for vulnerable machines. Once a vulnerable machine is found, it is
reported to the Mirai “C&C” server. The C&C server then sends this information to
a different server that hosts an SQL database. Finally, it notifies a third server, the
“loader”, which exploits the vulnerability, sends the payload and executes a new instance
of the bot [1].

The separation of C&C and loader is done in order to prevent the botnet from being
taken down if the C&C is blocked. Furthermore, the loader is not referenced by IP
address but by domain name in the bot executable, allowing for a short downtime in
case the C&C is targeted. The attacker only has to spawn a new machine and update
the DNS records to point to it, restoring the connection to the entire botnet.

2.5 Related work
The idea of collecting low-level host data for intrusion detection purposes is not new.
Garfinkel & Rosenblum [22] proposed an IDS architecture relying on this very idea, by
running the host’s application in a virtual machine, and exposing low-level information
about the application to a local IDS. Such an architecture provides isolation between
the potentially compromised host application and the IDS, while still giving access to
a fine-granularity level of detail. Forrest et al. [3] showed that observing sequences of
privileged syscalls made by an application could be used to reliably detect certain classes
of attacks. However, it seems that so far no similar approach has been done for IoT
environments.

There have been many works focused on building IoT intrusion detection systems, most
of them based on a network-level approach. SVELTE is an IDS focused on 6LoWPAN
networks, developed by Raza et al. [4]. This system, aimed at detecting routing attacks,
builds a map of the meshed network during a learning phase, then monitors network
flow for any behavior not matching this mapping. INTI [7] is another 6LoWPAN IDS,
that detects attacks by having the nodes first categorize themselves in clusters based on
their proximity. Packet flow monitoring is then performed at every node, and used to
calculate a level of trust for each one. When a node’s trust dips too low, it is considered
compromised, and is eliminated from its cluster. Kalis, proposed by Midi et al. [6] is a
more general-purpose IoT IDS. The core idea being: while most attacks can be detected
reliably by an existing IDS, there is no IDS that is able to identify all attacks on its own.
The system learns the specifics of the network (devices type, network layout) and uses
this knowledge to select the IDS that make sense in this scenario. Moustafa et al. [23]
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presented an NIDS for IoT based on statistical flow features. From a given network
features dataset, a subset is picked based on the features with the lowest cross-correlation
(i.e. the features the most independent from every other). These features are then passed
on to a set of three different machine learning models, which each determine whether the
traffic observed is malicious or benign. Their decisions are used in a weighted vote to
arrive at a final decision.
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Chapter 3 |
Sentinel

3.1 Threat Model
We assume that the attacker has access to the network, and is able to run arbitrary code
on any compromised node. Further, the attacker can take over the IoT application itself
to make it run arbitrary code. However, we assume that the attacker does not have
privileged access, nor can they disrupt the kernel, as it would then be trivial to replace
our kernel module with a malicious one that would only report fake information.

Regarding the hub, we assume that the attacker does not have any access to the
component of Sentinel running on it, and cannot alter its behavior nor kill it. We make
no assumption regarding the capability of the attacker to get access to the information
exposed by Sentinel.

The attacker can have a wide array of goals. Possibilities include: using corrupted
devices as part of a botnet for DDoS attacks, sniffing network traffic to collect sensitive
information, or disrupting the network to make it non-functional.

3.2 Architecture
Sentinel is a novel framework designed to help detect node-level and network-level attacks
on IoT networks. The purpose of this system is to serve as a data aggregation platform,
and expose the collected information to an IDS specialized for a given environment.
By providing an IoT framework-agnostic system, it relieves IDS designers from the
burden of adapting their methods to the low-level specifics of the network. As IoT is a
fundamentally constrained domain, both in computation power and power consumption,
Sentinel aims to be as lightweight as possible on the network nodes, by offloading most
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of the heavy work to the hub, a centralized, higher power device.
Sentinel is built upon a Linux Kernel Module running on every IoT device in the

monitored network (number 1 in Figure 3.1), and providing various low-level metrics
to the userspace. Each of these devices then runs a data sampling application (2) that
periodically collects theses metrics and sends them over to the IoT hub. In the hub
runs a data collection component (3), in charge of receiving and storing this data, and
exposing it through an API, to allow an IDS (4) to use this information.

While the idea of running some part of Sentinel on every device we want to secure is
a reminder of a host-based Intrusion Detection System (HIDS), due to the constraints
inherent to the IoT devices, we cannot afford to perform any detection work locally.
Instead, we centralize all the data at the hub and run an IDS either there (or on another
remote machine), making our architecture more closely related to a network-based IDS
(NIDS).

Figure 3.1. Structure of Sentinel

3.2.1 Kernel Module

The Sentinel Kernel Module (SKM) is in charge of exposing useful low-level metrics to
userspace, in a machine-friendly and centralized location. This data can then be accessed
by any process that needs it.

The SKM is a Linux Kernel Module, installed on every node that needs to be
monitored. Once installed, it creates a set of entries in the sysfs filesystem, each one
corresponding to a metric, with its contents mappable to a standard C type. Whenever
a file is read, the SKM is informed, and fetches the wanted value directly from the
relevant kernel data structure. sysfs is a RAM-based filesystem, introduced in the Linux
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Kernel as a replacement for the legacy profcs. It provides a file-based view of the kernel
data-structures by giving developers an easy interface to export kobjects. Each file in
sysfs corresponds to a single item (e.g. the temperature of a device). These files can be
either read-only (if it would not make sense to write to them), or can allow writing in
order to configure the device they relate to [24].

We chose to use a Kernel Module for two main reasons. Such a module allows for
lower performance overhead than a userspace application, as the transition between
userspace and kernelspace does not provoke a context switch. Additionally, a kernel
module needs less computing power to perform its task than a regular application, as
all the data it needs already exists in the kernel memory and simply needs to be read.
Meanwhile, a userspace application would have to parse the output of specific commands
or kernel files.

We chose to use sysfs because this filesystem is considered to be the standard way
to expose kernel information to userspace [25].

The implementation of the SKM allows any user on the device to access the exposed
data. This might be considered too lax, as this information could be deemed sensitive.
One way to remediate this issue would be to only allow certain users to access it, limiting
the access to only the monitoring application. Another route would be to perform some
cryptographic manipulation of the data inside the SKM, so that only the hub could
interpret it after receiving it. This would provide end-to-end confidentiality of the data,
at the expense of higher computation cost on the node.

The metrics exposed by the SKM are available in Table 3.1. In addition to the
system-level parameters made available by the SKM, we also allow exposing information
about an arbitrary process. The target process can be dynamically changed at any time.
The values we collect and make available are presented in Table 3.2. We choose to expose
these specific metrics for two main reasons. They are easy to find in the kernel, and do
not require any complex computation to be obtained, allowing us to keep the performance
hit of the SKM minimal. Further, these metrics have been proved to provide actionable
information for intrusion detection, as seen in the related work.

Adding new metrics to be reported by the SKM is straightforward, as it only requires
to add a new sysfs entry in the module source code, and write a function that fetches
the corresponding data from a relevant kernel object.
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Metric Unit
Number of logical CPUs N/A
Frequency of each CPU kHz

Total, free, and available RAM kB
Total, free, and available swap kB
Number of running processes N/A
1, 5, and 15 minutes loads N/A

Table 3.1. System-level metrics exposed by Sentinel

Metric Unit
Current physical memory used kB
Current virtual memory used kB
High-water physical memory kB
High-water virtual memory kB

Number of file descriptors open N/A

Table 3.2. Process-level metrics exposed by Sentinel

3.2.2 Data Sampling

With the data exposed by the SKM, we can collect it from the node’s userspace. The
data sampling component periodically reads all the data available, and forwards it to the
hub.

The communication between the nodes and the hub is done via a Message Queue
Telemetry Transport (MQTT) layer, a publisher-subscriber protocol commonly found in
home IoT networks [26]. In an MQTT system, clients can publish and subscribe to topics
(e.g. living_room/thermostat). Any message published to a topic will be relayed to
its subscribers. In our implementation, the entire MQTT traffic is secured with SSL
certificates, both for the server and the clients. This ensures that the reported data is not
sent to an attacker masquerading as the broker, and prevents an attacker from injecting
malicious values.

As MQTT is almost ubiquitous in home IoT environments, having Sentinel piggyback
on it helps reduce the need for extra software installation and maintenance. It also
provides a scalable platform, allowing an arbitrary number of nodes to send their
information to the hub.

In the current implementation, the device polling is done at a fixed rate. Setting this
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rate too high can cause an overabundance of data at the hub, and cause high CPU use
on the nodes. On the other hand, setting it too low may cause an attack to be missed
or detected later than it could have been. This is why our application also provides a
way to a fortiori change the polling rate, in order to allow an IDS to implement some
drill-down policies. For instance, the polling rate can be set to a low value in standard
conditions, and increased whenever a suspicious behavior is detected.

3.2.3 Data Aggregation

Once the data from the nodes is sent to the MQTT broken, the hub needs to notify the
broker it wants to receive it. As an IoT network needs to be flexible to allow for devices
being frequently added and removed, the data collection component dynamically detects
data coming from unknown nodes, and is able to handle nodes reconnecting.

Upon receiving a data record from a node over the MQTT connection, the hub
unpacks it and inserts into a local PostgreSQL database instance. This database also
provides an open interface for remote connections.

The use of a PostgreSQL database was dictated by the need for a data access
method providing concurrent access, as well as remote access. PostgreSQL being an
industry-tested framework also helps the stability of our system.

Having the database instance run locally is convenient as it provides faster access
time. However, this causes the hub to be a centralized point of failure, as the loss of the
device will cause all the stored data to be lost. For this reason, the data aggregation
component is able to use a remote database instead, at the expense of performance.

3.2.4 Intrusion Detection

Once the data has been collected and transmitted over to the hub, it is stored and can
be accessed either by the hub or by a remote machine, for real-time monitoring.

The data storage is done in a PostgreSQL instance. The data format used in this
database is specified in a Python library based on SQLAlchemy. This library presents an
API for easy data retrieval and manipulation, and new custom functions can be designed
to fit a user’s needs.

We choose to use a PostgreSQL database as it provides a reliable, production-tested
data storage solution. It also supports native concurrent access, allowing a real-time data
processing solution to be accessing it while Sentinel is still collecting more measurements.
Finally, an SQL database also provides a well-known low-level API to allow any user to
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create their own data access functions without having to rely on the methods provided
by Sentinel.

While it is reliable, PostgreSQL is not the fastest or lightest SQL solution that could
be used. In particular, if no concurrent or remote access is needed, a simple system like
SQLite could be used. However, this change is easy to implement, as no part of the
system relies on any specific property of PostgreSQL.

This component allows Sentinel to be fully agnostic to the actual IDS system imple-
mented, local or remote. However, in order to prove the usefulness of this framework, we
provide a proof of concept for a simple Decision Tree-based IDS in the evaluation of our
work. The goal of this proof of concept is to demonstrate that the metrics collected hold
some intrinsic information that can be used to successfully detect and identify an attack,
while remaining compatible with IoT constraints.
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Chapter 4 |
Testbed Environment

In this, we first present how we select and implement the attacks we use in our evaluation.
We detail which IoT frameworks are used, and why they are chosen. We then list out
which IoT devices are implemented, and how we orchestrate their behavior during data
recording sessions.

4.1 Simulated Attacks
In order to evaluate how Sentinel can help detect IoT network attacks, we need to observe
the data it collects while running an attack, or at least simulating the side effects of said
attack. In order to determine which side effects should be implemented, we turn to Mirai.

From it, we can extract three main side effects of interest: the network scanning
phase, the C&C connection, and the new target reporting. We then focus on these
three behaviors, which also happen to be common traits of IoT network attacks, in our
evaluation.

We decided to simulate the side effects of Mirai, rather than actually run it, because
we believe that the minute details of the attack are not what Sentinel focuses on. Rather,
we simply implemented the side effects of these behaviors, as would be seen on an infected
device. Further, we also implement the effects of a black/grey hole attack, as it is a
commonly encountered behavior in IoT network intrusions.

4.1.1 Network Scan / Pivoting

A pivoting action consists of scanning the newly reachable network with Nmap. In order
to be as realistic as possible, we do the same here: the device running the attack ping
scans a server continuously.
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4.1.2 Exfiltration

For this behavior, the side effects are somewhat the inverse of the previous one: a large
amount of outbound traffic, and no increase in inbound. We simulate this by sending
large UDP packets to a server that simply discards them.

4.1.3 C&C Keep-alive

In order for the attacker to keep control of its infected devices, they need to periodically
exchange a heartbeat message, to confirm that it is still reachable and compromised.
This is simulated by periodically pinging a remote machine, that responds with an empty
payload.

4.1.4 Black/Grey Hole Attack

The side effect of such an attack is a large amount of inbound network traffic and a small
amount of outbound traffic. This is simulated by having the device connect to a server,
and the server sending a large message (≥1MB) in response. In addition, for a grey hole
attack, a random amount of received messages will be sent out to simulate the partial
packet drop created by the attack.

4.2 IoT Frameworks Considered
In order to assess the real-world usefulness of Sentinel, we install it on two different IoT
networks, each of them running a different IoT framework, and with a similar device
architecture. The two frameworks considered are Home Assistant and WebThings.

Home Assistant is an open-source framework, providing integration with most com-
mercial IoT devices. A strong emphasis is put on user freedom, allowing them to create
their own devices and guaranteeing a fully local processing. This framework’s hub can
be installed on any main OS, and provides extensive configurability. Connecting a device
to the hub is done by creating an “integration”, which defines what interactions are
possible with the device, and how the hub can perform them. As creating an integration
is complex task, a common way for enthusiasts to create their own devices is to use
the pre-existing MQTT integration. This integration allows the user to define a new
device (e.g. a new light) by simply listing its MQTT topic, as well as its capabilities. The
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only work to be done is then to write the client-side handler that reacts to the MQTT
messages coming from the hub, and sends back acknowledgements.

WebThings is Mozilla’s open-source implementation of the Web of Things (WoT), an
initiative aiming to standardize IoT. As with Home Assistant, this framework focuses on
giving users the tools they need to configure and control their networks as they want.
The WebThings Gateway (WebThings name for a hub) can be run any Linux machine,
and provides a local data-processing. Adding a device to the network simply is as simple
as implementing a few API endpoints and running a web-server on the device. The
Gateway then automatically detects and connects to the server. From here, the user only
has to program the device to perform its work when a callback function is called.

Another very popular IoT framework is SmartThings. SmartThings is a closed-source
framework owned by Samsung. It provides a way for consumers to connect their home
IoT appliances, either through a commercially available hub, or through the SmartThings
cloud. The user is able to write their own control logic to orchestrate the devices using
the SmartThings web IDE. However, the only way to build a SmartThings network is to
use a pre-approved commercial hub, on which it is not possible to install arbitrary kernel
modules or software. As such, we decided against using it in our evaluation. However, as
the commercial hubs run on Linux, we believe it would be possible for Sentinel to be
integrated by their manufacturers.

4.3 IoT Network Layout
The network we simulate runs on a set of Raspberry Pi 4, each one representing a
different IoT device. At the center of the network is the hub. Every other device runs an
implementation of its role in the used IoT framework, as well as Sentinel. In order to
help visualize the set of devices used in our testbed, Figure 4.1 illustrates an example
floor plan of a studio using all of them. The hardware we use to simulate the devices are
listed in the Table 4.1.

4.3.1 Home Assistant Implementation Details

All the IoT devices are implemented in Home Assistant with the default MQTT com-
ponent. Each device is essentially a Python application that subscribes and publishes
to the relevant MQTT topics. For instance, a door lock will interact with the following
topics:
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Figure 4.1. Floor plan of the experimental testbed

Device type Hardware attached
Color light bulb WS2812 LED strip
Smoke detector Smoke sensor

Door lock Servo-motor
Smart TV N/A
Thermostat BMP280 sensor and power relay

Weather station BMP280 sensor
Presence detector PIR motion detector
Physical switch Double-throw switch

Outlet Power relay

Table 4.1. Types of devices present in the network

• home/mqtt_lock/available: whether the device is connected and available

• home/mqtt_lock/set: listen for commands coming from the hub

• home/mqtt_lock/state: publish its current state, used as an acknowledgment for
the hub

All the messages (both from the hub and the devices) are set to be retained by the
broker, so if any party restarts, it is able to immediately assess the current state of the
system and set its internal representation accordingly. For instance, if a device stops for
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any reason, when it restarts and connects to the broker it will be informed of the last
command the hub sent it, and will be able to act accordingly.

4.3.2 WebThings Implementation Details

WebThings handles devices differently from Home Assistant. While the latter needs to
have prior knowledge of the device type and already have a server-side handler (called
“component”), the former only needs the nodes to create a simple web-server that exposes
a predefined API. Once the hub has detected and connected to the node’s server, it can
learn the properties the devices possesses (such as OnOffProperty, ColorProperty, etc.).
For a device to be recognized as a specific type (e.g. a lamp), it needs to expose a specific
set of properties [27].

For instance, a thermostat needs to implement the TemperatureProperty and Tar-
getTemperatureProperty properties in order to have the “Thermostat” capability. Ad-
ditionally, the HeatingCoolingProperty and ThermostatModeProperty properties will
also be part of the interface provided by the “Thermostat” capability.

4.3.3 Collecting the Training Data

With the attacks defined, the nodes implemented, and the frameworks selected, we can
start collecting the training dataset. The idea behind this is to generate and record the
behavior of every single device for every possible configuration it can have. This gives
us a clearly labelled set of data that can be used by an automated detection system.
For each combination of attack, device state, and framework, we run each device for 20
minutes and record its metrics with Sentinel.

4.4 Simulating the IoT Network
In order to generate the training dataset, we build a home IoT network with standard
devices, which we cycle through all the possible combinations of logical state and simulated
attack. This is done by enumerating all these combinations in a text file, referred to as a
“trace file”. This trace is then fed to a scheduling engine that parses it, and executes all
the events founds inside.

As the purpose of this simulation is to evaluate how Sentinel is able to pickup
behavioral discrepancies in running devices, we do not worry about running the devices
in a realistic schedule. Instead we focus on generating clean and consistent data.
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A complete overview of Sentinel instrumented for these experiments is available in
Figure 4.2.

Figure 4.2. Sentinel instrumented for the experiments

4.5 Implementation
The devices used to represent the IoT network in our experiments are Raspberry Pi 4
model B, with 4GB of RAM. All the Raspberry Pi use a custom Raspbian Lite image,
created with the pi-gen tool [28]. The image consists of a Raspbian Lite, to which we
add WiFi credentials, customize username and password, enable SSH, and install all the
tools that compose Sentinel. Each Python application has a virtualenv created where
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all the required packages are installed. The SKM is compiled, installed and set to load
at boot time.

The nodes are connected through Wi-Fi, supported by a D-Link DIR-605L router
running firmware v2.09.
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Chapter 5 |
Evaluation of the Detection Sys-
tem

Our evaluation aims to prove that Sentinel is able to provide a novel and useful layer of
security to IoT networks. In this section, we answer the following questions: (1) Can the
power usage of Sentinel be low enough to be used in a energy-constrained device? (2)
Can the data provided by Sentinel power an intrusion detection system? (3) How does
the polling rate of Sentinel influence the accuracy of the detection? (4) How does the
number of CPU cores available to an IoT node influence the detection accuracy?

5.1 Power consumption analysis
Another constraint for IoT devices is power use. Some devices are designed to be battery
powered and be able to last for months or years on their supply. To inspect how Sentinel
can impact the battery life expectancy of these devices, we perform a power consumption
analysis. This is done by running the device handler on a Raspberry Pi with and without
Sentinel, in different logical states, and with various reporting periods. The power draw
is measured at the outlet with a watt meter in which only the Pi is plugged in. The
results of the experiment are available in Figure 5.1.

For a reporting period of one second, Sentinel causes an increase of power use of about
10%, which will definitely impact the lifetime of a battery-powered device. However, as
the polling frequency decreases, the power consumption overhead incurred decreases too.
As such, for a ten seconds reporting delay, the overhead dips below 1%. This means it is
possible to find a tradeoff between battery life and enhanced device security by varying
the sampling rate.
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Figure 5.1. Power overhead caused by Sentinel for various polling periods, expressed as
absolute and relative values

5.2 Training a Decision-Tree IDS
In this section, we use data collected by Sentinel to train models that are able to classify
the current state of each node. We develop binary (detection whether an attack is
happening) and multi-class classifiers (which particular attack is happening, if any).

For each node, we create a dataset where we prune some constant features that are
recorded by Sentinel and won’t be useful for our model (nb_cpus, free_ram, total_ram,
free_swap, total_swap, tracked_pid). All the datapoints are then normalized between
0 and 1, based on the min and max value achieved for each metric. The only two exceptions
are RAM and swap usage, which are expressed as a percentage of total use. The datasets
created contain the samples recorded every second over the time window of the experiment
and are labeled if there is an attack or not (binary classification), or which type of attack
is under way with a “no attack” type (multi-class classification).

These datasets are then used to train a set of Decision Tree models. Decision Trees
are a class of Machine Learning classifiers. They operate by traversing a binary tree built
during a training phase. Starting at the root of the tree, each node corresponds to a
comparison of a specific value of the datapoint. Based on the result of this comparison,
one of the two branches of the node is taken, and the operation is repeated until it reaches
a leaf node. This leaf node corresponds to the class the sample is predicted to belong to.

The concept of using Decision Trees for Intrusion Detection purposes is not new.
Indeed, such models have been used in this manner with great success over the past two
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decades, brining with them faster reaction time and improved detection accuracy [29].
Further, Decision Trees are one of the most explainable machine learning systems, allowing
us to understand which criteria was used to make each decision.

For our purposes, we trained the models using stratified k-fold validation. In this
training method, the data is split into multiple subsets (called “folds”), while making
sure that each class is evenly represented across each set. Each of the folds is then split
randomly into an 80%/20% partition. We train the model on the first part, and evaluate
it on the second. This method of training is useful in proving that the results obtained
are not due to random chance and are consistent across multiple independent training
passes.

As a classification system like a Decision Tree operates either in binary or in multi-class
mode, we train models with both configurations, to see if they present any meaningful
difference. The confusion matrices for the Home Assistant framework are presented in
Table 5.1 for the binary classifier, and Table 5.3 for the multi-class system. The same
results for the WebThings framework are presented respectively in Tables 5.2 and 5.4.

The multi-class systems clearly outperform the binary ones, as seen on their higher
true positive rates. Further, the high false negative rates of the binary classifiers give us
insight into the fact that bundling all the attacks under a single detection target does
not perform optimally. Indeed, the actual low-level effects of these attacks are not all
identical, making it harder for the classifier to find a unified method of detection. Of
course, this detection work remains a proof of concept for the efficacy of Sentinel, and
does not claim to be a cutting-edge IDS.

Attack No attack

Attack 87.77% 12.23%
No attack 4.29% 95.71%

Table 5.1. Confusion Matrix for Home Assistant Binary

Attack No attack

Attack 96.25% 3.75%
No attack 0.75% 99.25%

Table 5.2. Confusion Matrix for WebThings Binary

In order to determine the best value for the depth of the Decision Trees, we trained
multiple models: one per possible depth value (between one and the total number of
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Attack 1 Attack 2 Attack 3 Attack 4 Attack 5 No attack

Attack 1 99.35% 0.13% 0.00% 0.00% 0.00% 0.52%
Attack 2 0.00% 91.31% 0.41% 0.00% 0.00% 8.28%
Attack 3 0.04% 0.43% 96.67% 0.04% 0.00% 2.83%
Attack 4 0.00% 0.00% 0.13% 99.11% 0.02% 0.74%
Attack 5 0.00% 0.00% 0.00% 0.00% 98.15% 1.85%

No attack 0.04% 1.36% 0.15% 0.06% 0.09% 98.31%

Table 5.3. Confusion Matrix for Home Assistant Multi-class

Attack 1 Attack 2 Attack 3 Attack 4 Attack 5 No attack

Attack 1 98.76% 0.17% 0.02% 0.00% 0.00% 1.06%
Attack 2 0.167% 96.13 0.74% 0.20% 0.11% 2.65%
Attack 3 0.00% 0.00% 96.19% 0.35% 0.02% 3.33%
Attack 4 0.00% 0.17% 0.48% 96.56% 0.15% 2.65%
Attack 5 0.02% 0.00% 0.04% 0.07% 97.46% 2.41%

No attack 0.05% 0.26% 0.18% 0.17% 0.20% 99.15%

Table 5.4. Confusion Matrix for WebThings Multi-class

metrics), and one with no depth limit. The accuracy results are available in Figure 5.2. As
accuracy converges after a depth of 14, we use this value for the rest of the experiments.
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Figure 5.2. Detection accuracy for various Decision Tree depths

The models trained with the data collected previously present an accuracy of 99.8%.
While further work would need to be put into testing the full detection capabilities of the
data collected, we believe that this result demonstrates that Sentinel has some potential.
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5.3 Sample Rate Influence
In order to characterize how the quality of the data collected by Sentinel is impacted by
its sampling period, we run two data collection runs. The first one has a polling rate of
one second, and each state is held for one minute. The second is done with a period of
ten seconds, and a state duration of ten minutes. These configurations provide us with
the same amount of measurements in both sets, guaranteeing that any difference found
is not caused by variability of the training dataset sizes. The results of this experiment
are presented in Table 5.5 and Figure 5.3.

1 CPU Core 4 CPU Cores
Accuracy (95% confidence) 95.8% ± 1.4% 90.2% ± 1.9%

Table 5.5. Detection precision for a polling rate of 1s and 10s
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Figure 5.3. Detection Accuracy for a polling rate of 1s and 10s

When the polling rate is decreased to ten seconds, the detector accuracy decreases
by 5.6 percentage points. While the longer sampling period comes with a potentially
increased reaction time to an attack, Sentinel comes with a drill-down capacity, allowing
an IDS to dynamically change the polling rate of individual devices. It is then possible
to design a logic that temporarily decreases the sampling period if suspicious behavior is
noticed.
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5.4 Device performance
The Raspberry Pi 4, which was used to represent an IoT device, is significantly more
powerful than the average IoT device, which are usually single-purpose, single-core
devices. The Raspberry Pi 4 has a 1.5GHz four core CPU, which could have an effect on
Sentinel. To evaluate how this impacts its performance, we perform another complete
data gathering experiment similar to the previous, but we first disable three of the four
cores of each node. The data is gathered with one second between each sample, and
one minute per state. We then train a new Decision Tree on this dataset, and compare
its precision to the four core dataset. The results of this experiment are available in
Table 5.6 and Figure 5.4.

1 CPU Core 4 CPU Cores
Accuracy (95% confidence) 93.0% ± 2.7% 95.8% ± 1.4%

Table 5.6. Detection precision for 1 and 4 core devices
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Figure 5.4. Detection Accuracy on a device with 1 and 4 CPU cores

With a core count reduced to one per device, the attack detection accuracy is decreased
by 2.8 percentage points. This difference comes from the fact that, as the device now
has to share a single core for all its processes, some metrics are not as insightful as with
four cores. For instance, the cpu_load metric, that records the one-minute CPU load of
the device, now has an increased value outside of an attack. When an attack occurs, its
increase is consequently less noticeable.
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However, it is to be noted that the detector performance was not degraded to useless
a level by this change. We believe that this result shows that Sentinel could effectively
run on a low core-count device.
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Chapter 6 |
Discussion

As stated previously, Sentinel is not a fully-fledged Intrusion Detection System. Its
purpose is to provide a lightweight framework-agnostic data-collection system. It should
be used as a stepping stone to help build new IDSs specially designed for IoT environments,
using the data made available to detect novel attacks. The detector presented in this
paper are only a proof of concept to validate that the data collected has some inherent
value for intrusion detection.

While the metrics collected by Sentinel proved to be useful in detecting malicious
behavior, they are not optimized for every device. Adapting Sentinel for a new set of
devices, or for a different IDS may require new features to be added. This can be done
relatively easily by editing the source code of SKM. Further, as sysfs is passive (i.e. it
the SKM only does some work when a file is read), there is no issue with adding more
features than required, as the unused ones can simply be ignored by the data polling
application.

As the iteration of Sentinel presented in this paper depends on every device running
Linux and being able to communicate over MQTT, it does not faithfully represent the
totality of the IoT devices available currently. However, we do not believe this to be an
issue for multiple reasons:

• Any IoT device that does not run Linux will most likely run a very limited firmware,
making it irrelevant to the attacks considered in this paper.

• Watchtower could be modified to work not only with MQTT, but also with other
non WiFi-based IoT protocols, such as Zigbee or BLE.

The MQTT component of Sentinel relies on server-side and client-side certificates
in order to provide adequate security properties. For the purposes of our experiments,
the certificates were manually generated and distributed, for the sake of convenience.

30



However, in a real-world environment, where the IoT network would need more flexibility,
the certificate distribution would have to happen through a centralized authority.

Our experimental MQTT setup allows any device with the proper credentials to
publish and subscribe to any topic, potentially allowing an attacker to obtain sensitive
information by corrupting a node. Most MQTT brokers provide an Access Control List
feature, through which read/write access to topics can be restricted. However, this ACL
is static and needs to be edited whenever a new device joins, as it will need its own set of
topics to publish to. A potential alternative to this unwieldy method could be to add an
end-to-end encryption layer on the data, by encrypting it in the SKM, and decrypting it
at the hub. This would prevent any possibility of eavesdropping, but would require to
design a key agreement method between the kernel module and the hub.

Fault detection is another active domain of IoT research, focusing more on safety,
where intrusion detection focuses on security. However, both domains share features, as
faults can have similar side effects as network intrusions. For instance, a device getting
stuck in an infinite loop can resemble a sleep deprivation attack. We therefore believe
that Sentinel could see some application in fault detection, as the metrics used by the
system could be used as input of a fault detection system.

Our threat model assumes that the adversary does not have privileged access to the
nodes, and as such cannot falsify the data reported by the SKM. However, it could be
interesting to investigate if an attacker with root access forcing the node to misreport
the system information could impact the detection abilities. In particular, when a device
changes state, the attacker would have to adapt its falsification in order to remain covert.
This is at first glance not trivial, as it requires the knowledge of how the device should
behave in every scenario.

As stated previously, Sentinel does not claim to be an automated intrusion detection
solution, but rather a data-gathering tool that can be leveraged by a dedicated detection
system. In order to be improved, Sentinel could provide a larger variety of data, which
would allow it to be tailored to fit a specific scenario, where some metrics are more
relevant than others. However, in order to determine which metrics could benefit from
being added to the monitoring capacities of Sentinel, some feedback from actual field
experience would be required.
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Chapter 7 |
Conclusion

Our work demonstrates that collecting low-level system information in IoT devices does
provide valuable insight into the presence of an attacker. Through our evaluation, we
prove that a simple detection model, with our generated datasets, is capable of assessing
malicious behavior with a high degree of accuracy. Further, we show this data collection
can be achieved for a low cost, making it compatible with the constraints inherent to
IoT devices.

Future work on this topic will be focused on exploring the detection possibilities of
additional IoT attacks, as well as expanding the set of metrics collected, and evaluating
their individual values. Work will also be needed on implementing Sentinel on commercial
IoT devices, to confirm our results obtained on open-source devices.
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